
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de

OpenTOSCA Injector: Vertical and Horizontal Topology
Model Injection

Karoline Saatkamp, Uwe Breitenbücher, Kálmán Képes, Frank Leymann,
and Michael Zimmermann

@inproceedings{Saatkamp2017_OpenTOSCAInjector,
author = {Karoline Saatkamp and Uwe Breitenb{\"u}cher and K{\'a}lm{\'a}n

K{\'e}pes and Frank Leymann and Michael Zimmermann},
title = {OpenTOSCA Injector: Vertical and Horizontal Topology Model

Injection},
booktitle = {Service-Oriented Computing – ICSOC 2017 Workshops},
year = {2018},
pages = {379--383},
doi = {10.1007/978-3-319-91764-1},
series = {Lecture Notes in Computer Science (LNCS)},
volume = {10797},
publisher = {Springer International Publishing}

}

:

Institute of Architecture of Application Systems

© 2018 Springer International Publishing.
The original publication is available at
https://www.springer.com/gp/book/9783319917634
See also SpringerLink: https://link.springer.com/book/10.1007%2F978-3-319-

91764-1

https://www.springer.com/gp/book/9783319917634
https://link.springer.com/book/10.1007%2F978-3-319-91764-1

OpenTOSCA Injector: Vertical and Horizontal

Topology Model Injection

Karoline Saatkamp, Uwe Breitenbücher, Kálmán Képes,

Frank Leymann, and Michael Zimmermann

Institute of Architecture of Application Systems, University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Abstract. The automation of application deployments is supported by

various technologies. The TOSCA standard facilitates to describe applica-

tion deployments in a portable manner by modeling application structures

as topology models. The final structure often depends on the target envi-

ronment and is, therefore, not always known at modeling time. However,

a manual adaptation is error-prone and time-consuming. In this paper,

we demonstrate the OpenTOSCA Injector for an automated completion

of topology models: the extended TOSCA runtime OpenTOSCA for an

automated injection and deployment is presented.

Keywords: TOSCA, Deployment Model, Completion Automation

1 Introduction and Motivation

In recent years, several technologies and standards were developed to automate

the deployment of cloud applications. This includes configuration management

technologies such as Chef, container technologies such as Docker, and standards

such as the Topology and Orchestration Specification for Cloud Applications

(TOSCA) [6]. TOSCA is an OASIS standard that enables to define application

deployments by topology models and management plans, which can be executed

automatically by a TOSCA runtime, e.g., the OpenTOSCA container [1].

A topology model describes the application components and their relations.

This includes application-specific components, such as PHP applications or

databases, middleware, and infrastructure components, such as web servers

or virtual machines. Thereby, application deployments can be described in a

vendor-independent and portable manner. However, the available middleware,

infrastructure, as well as application-specific components can differ between

environments. When, for example, application deployments are provided for third

parties or parts of the IT infrastructure are outsourced, the target environment is

not known in advance. Thus, the final topology model is not known at modeling

time. However, the manual adaptation for each target environment is time-

consuming and error-prone [4]. To enable an environment-independent modeling

via incomplete topology models and an automated environment-specific injection

2 Karoline Saatkamp et al.

Amazon RDS
(Amazon RDS)

MySQL-DB
(MySQL-DB5.7)

MyPHP-App
(PHP-App)

R
eq

MyPHP-App
(PHP-App)

MySQL-
Req

P
H

P
H

o
st

-R
eq

Amazon Beanstalk
(Elastic Beanstalk)

Req

Injection

Bean-
stalk

Bean-
stalk

MySQL

RDS

Provider Repository

select & inject

hostedOn

connectsTo
MySQL

Cap

C
ap

hostedOn

Fig. 1. Topology model with open requirements (left) and injected components (right)

of components during deployment time, the OpenTOSCA Injector is developed:

infrastructure components (vertical injection) as well as, e.g., data storage stacks

(horizontal injection) are selected and injected to complete formerly incomplete

topology models.

2 TOSCA Fundamentals and Injection Concept

As already mentioned TOSCA is an OASIS standard that enables to describe the

automated deployment of applications in a vendor-independent and portable man-

ner. Several TOSCA runtimes to process TOSCA models are already developed

such as Cloudify1, Apache ARIA TOSCA2, and the OpenTOSCA container3.

In the following all TOSCA concepts relevant for the OpenTOSCA Injector are

introduced. More details about TOSCA can be found in the specification [6].

The structure of an application can be described as Topology Template, which
is a directed and weighted multigraph as depicted in Fig. 1 on the right. The

components are modeled as Node Templates, e.g., MyPHP-App, and the relations

between them as Relationship Templates such as hostedOn. Their semantic

is defined by Node Types, e.g., PHP-App, and Relationship Types, respectively.
Types can be derived from other types, thus, inheritance hierarchies can be defined.

For Relationship Types valid target and source elements are specified, which can

be Node Types or Requirement Types and Capability Types. For each Requirement

Type, exactly one requiredCapabilityType is defined, i.e., each Capability of this

type can be matched to a Requirement of the respective Requirement Type.

Requirements and Capabilities of these types can be attached to Node Templates.

Thus, the matching between Requirements and Capabilities and hence between

Node Templates is realized, which is the basis for the OpenTOSCA Injector.

1 http://cloudify.co/
2 http://ariatosca.incubator.apache.org/
3 http://www.opentosca.org/

Topology Model Injector 3

The left side of Fig. 1 shows an incomplete topology with two open Require-

ments. The Requirements PHPHost-Req and MySQL-Req require Node Templates

with matching Capabilities. Possible suitable Node Templates are stored in a

local Provider Repository in which the respective owner can add all available com-

ponents in the environment, such as specific infrastructure components. However,

in future work also the linkage to public repositories should be enabled. With

the OpenTOSCA Injector, not only single Node Templates but also topology

fragments can be injected [4]. As shown in Fig. 1 on the right, a topology fragment

could consist of a MySQL-DB and an Amazon RDS component, which is injected

based on the matching between the Requirement MySQL-Req and the specified

requiredCapabilityType, e.g., MySQL-Cap attached to the MySQL-DB.

For each match a suitable Relationship Type has to be found to connect the

matched Node Templates. This, for example, could be a hostedOn or connectsTo
relation. The suitable Relationship Type is determined by the assigned Require-

ment and Capability. However, specific types such as connectsToMySQL are not

always available in the target environment. For this, TOSCA base types are

used: the hostedOn and the connectsTo Relationship Type [7]. In any case, one

of these base types is selected, because of the predefined inheritance hierarchy

of Capability Types. After the Node Templates or topology fragments are in-

jected with suitable Relationship Types, the topology is complete and deployable.

We implemented the described injection concept and demonstrate it with the

OpenTOSCA Injector, which extends the existing OpenTOSCA container.

3 System Architecture and Demonstration

The OpenTOSCA container is a TOSCA runtime supporting the imperative and

declarative processing of TOSCA models for an automated deployment [2]. For

the imperative processing the management plans are explicitly defined, whereas

at the declarative processing the deployment logic is inferred from the topology

model. Our demonstration is based on declarative provisioning modeling and

Control
IA & Plan

Engine

Container API

Model
Instance

Data

Topology Fragment
Injector

Topology Fragment
Selector

CSAR Importer & Exporter

Provider
Repository

Capability
Types

Relationship
Types

…

R
ep

o
si

to
ry

 A
P

I

Container Repository

…

Plan Builder
Management

Bus

a

b

c

d

e

Fig. 2. Extended OpenTOSCA System Architecture and Processing Overview

4 Karoline Saatkamp et al.

management plans are not explicitly considered. Besides the actual purpose

of the OpenTOSCA container to deploy cloud application, it is also used for

the automated deployment of use cases of the 4th Industrial Revolution [3]

and IoT scenarios with different messaging middleware systems [9, 10]. In this

demonstration the OpenTOSCA container is used to automatically complete and

deploy topology models for different deployment environments.

In Fig. 2 the extended OpenTOSCA system architecture4 is depicted. While

the left hand side shows the existing OpenTOSCA components required for

the deployment, the right hand side shows the Container Repository extending

the existing runtime. The Container API is used to upload topology models

and all related artifacts, such as JAR files or scripts for the deployment. The

Control component is responsible for interpreting the topology and tracking the

process. For a declarative processing, the Plan Builder generates plans based on

the topology model. The operations invoked by the plans need Implementation

Artifacts (IA) to install and start the application’s components. They are part

of the upload and processed by the IA Engine, while the plans are processed

by the Plan Engine. With the Management Bus, plans finally invoke different

kinds of management operations for the deployment. All data required during

the deployment, e.g., model information, and after the deployment such as the

instance data, are stored in databases.

For the demonstration of the injection the Container Repository is essential.

Its source code is based on the Eclipse Winery5, a modeling tool for TOSCA [5].

Because the injection affects the topology model, the existing Winery capabilities

to deal with topology model elements is utilized. The Topology Fragment Injector,
the Topology Fragment Selector component, and the Provider Repository extend

the existing Winery source code to use it as Container Repository for the injection.

For the injection, the incomplete topology as depicted in Fig. 1 on the left is

uploaded to the Container API and forwarded to the Control component. It

checks the topology model for open requirements and in case open requirements

are contained, an injection request is sent to the Container Repository (cf. (a) in

Fig. 2). The Topology Fragment Selector browses the Provider Repository for

topology fragments with matching Capabilities (cf. (b) in Fig. 2). For multiple

injection options, the user can select the preferred fragment. After the selection,

suitable Relationship Templates are determined based on the Requirements and

Capabilities, and used to inject the topology fragments in the model (cf. (c) in

Fig. 2). The completed topology model as presented in Fig. 1 is exported and the

Control component starts the deployment of the application (cf. (d) in Fig. 2).

The demonstrated OpenTOSCA Injector implements the TOSCA concept

for Requirement and Capability matching in an automated manner. It facilitates,

beyond the general matching of Capabilities, the injection of whole topology

fragments. The objective is to model an incomplete topology model with defined

requirements which is completed depending on the specific deployment environ-

ment, e.g., a factory, company, or public cloud provider. The Injector can be used

4 https://github.com/OpenTOSCA
5 https://github.com/eclipse/winery

Topology Model Injector 5

for the completion by, e.g., different infrastructure components (vertical injection)

such as an OpenStack or vSphere depending on the available infrastructure as

well as for the connection with different data sources for example to analyze the

available data in an environment (horizontal injection). Additionally, it supports

to restrict the set of considered topology fragments for the injection by target

labels attached to Node Templates to express preferences for the matching [8].

With the OpenTOSCA Injector, concepts for an environment-dependent and

automated application deployment can be realized.

Acknowledgments This work was partially funded by the projects SePiA.Pro

(01MD16013F), SmartOrchestra (01MD16001F), and IC4F (01MA17008G).

References

1. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner,

S.: OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In: Proceedings

of the 11th International Conference on Service-Oriented Computing. pp. 692–695.

Springer (2013)
2. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:

Combining Declarative and Imperative Cloud Application Provisioning based on

TOSCA. In: International Conference on Cloud Engineering. pp. 87–96. IEEE

(2014)
3. Falkenthal, M., Breitenbücher, U., Képes, K., Leymann, F., Zimmermann, M.,

Christ, M., Neuffer, J., Braun, N., Kempa-Liehr, A.W.: OpenTOSCA for the 4th

Industrial Revolution: Automating the Provisioning of Analytics Tools based on

Apache Flink. In: Proceedings of the 6th International Conference on the Internet

of Things. pp. 179–180. ACM (2016)
4. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F., et al.: Automatic Topology

Completion of TOSCA-based Cloud Applications. In: GI-Jahrestagung, GI, vol.

P-251, pp. 247–258. GI (2014)
5. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool

for TOSCA-based Cloud Applications. In: Proceedings of the 11th International

Conference on Service-Oriented Computing. pp. 700–704. Springer (2013)
6. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)

Version 1.0. OASIS (2013)
7. OASIS: TOSCA Simple Profile in YAML Version 1.0. OASIS (2015)
8. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology Splitting and

Matching for Multi-Cloud Deployments. In: Proceedings of the 7th International

Conference on Cloud Computing and Services Science. pp. 247–258. SciTePress

(2017)
9. Franco da Silva, A.C., Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Leymann,

F., Mitschang, B., Steinke, R.: Internet of Things Out of the Box: Using TOSCA

for Automating the Deployment of IoT Environments. In: Proceedings of the 7th

International Conference on Cloud Computing and Services Science (CLOSER

2017). pp. 358–367. SciTePress (Apr 2017)
10. Franco da Silva, A.C., Breitenbücher, U., Képes, K., Kopp, O., Leymann, F.:

OpenTOSCA for IoT: Automating the Deployment of IoT Applications based on

the Mosquitto Message Broker. In: Proceedings of the 6th International Conference

on the Internet of Things. pp. 181–182. ACM (Nov 2016)

	OpenTOSCA Injector: Vertical and Horizontal Topology Model Injection

